

1

Human-skin temperature elevation by EMF exposure at MMW and THz frequencies

Kun Li, Kensuke Sasaki, and Soichi Watanabe National Institute of Information and Communications Technology

Upcoming wireless technologies (5G and WiGig)

- The use of frequencies over 6 GHz is expected in 5th-generation (5G) mobile and wireless communications technologies
- WiGig using 60 GHz band is now commercially available.

https://www.tutorialspoint.com/5g/5g_technology.htm

https://www.extremetech.com/computing/89904-wigig-7gbpsdata-display-and-audio-mid-range-networking-coming-in-2012 2

International safety guidelines up to 300 GHz

- <u>Power density</u> [W/m²] is used as measure in the guidelines to protect humans from excessive temperature elevation over surface tissues: skin and eye tissues.
- Basic restrictions in power density in general public

National Institute of

Communications Technology

Information and

The exposure limits had been determined from limited scientific evidence when the guidelines had developed.

Purpose of this presentation

Communications Technology

National Institute of

Information and

- Summarize recent works based on temperature elevation by skin exposure at 10 GHz and higher;
 - 1. Dielectric properties of skin tissues,
 - Variation in the temperature elevation by skin tissues and by different body parts

Dielectric data of skin tissues

• Dielectric properties of epidermis are lower than those of dermis because of its water contents.

National Institute of

Communications Technology

5

Information and

relative permittivity

Temperature analysis using a multilayer plane model

- 4-layer plane model is used for assessment of energy absorption and temperature elevation analysis
 - ➤ solving boundary value problems of
 - 1. the Maxwell equation
 - 2. the Bio-heat equation

1D-Bioheat equation at steady states

Boundary condition at air-skin boundary:

$$\kappa \frac{d}{dx}T(x) = h(T(x) - T_{air})$$

 $h [W/(m^3 \cdot °C)]$: heat transfer coefficient

National Institute of

Communications Technology

Information and

Conditions : thermal parameters

• Thermal parameters for this study is as same as those used in [1].

[1] A. Hirata, et. al, Bioelectromagnetics, Vol. 27, pp. 602—612, 2006

	Epidermis	Dermis	Subcutaneous tissue	Muscle
κ [W/(m ∘C)]	0.42	0.42	0.25	0.5
ρ [kg/m³]	1109	1109	911	1090
A [W/m ³]	1620	1620	300	480
B [W/(m ³ °C]	0	9100	1700	2700

National Institute of

Communications Technology

Information and

Conditions: tissue thickness

National Institute of Information and Communications Technology

8

- Tissue thickness varies by body part and has individual difference.
- The variations in energy absorption and temperature elevation by exposures were assessed based on statistical data of tissue thickness using <u>Monte-Carlo simulation</u>.
- Tissue thickness was referred from those obtained by
 - 1. ultrasound imaging (fat & muscle)[1]
 - 2. biopsy (epidermis & dermis) [2]

Thickness of tissues (mean ±standard deviation)[1][2]

body parts	epidermis	dermis	subcutaneous tissue	muscle
	$[\mu m]$	$[\mu m]$	[mm]	[mm]
forearm	102 ± 34	1080 ± 160	3.89 ± 1.40	23.3 ± 4.3
abdomen	79.4 ± 33.9	1250 ± 260	14.3 ± 7.5	14.4 ± 3.5

[1] Ishida Y, et al., 1992 American Journal of Human Biology 4 511–20[2] Lee Y and Hwang K, 2002 Sur. Radiol. Anat. 24 183–9

Results: power transmittance into the skin

National Institute of Information and Communications Technology

Results: temperature elevation (IPD=10 W/m²)

- Frequency dependence shows similar tendency to that of the transmittance.
- Temperature elevations for abdomen were 8 \sim 12% higher than that for the forearm.

National Institute of

Communications Technology

10

Information and

• those for triceps, quadriceps, and abdomen are perfectly agreed each other.

Temperature elevation at steady state by plane wave exposure is sufficiently small to cause thermal burn at 10 W/m²: exposure limit for general public up to 300 GHz.

Conclusion

11

- Dielectric properties of tissues composing skin at body temperature were summarized.
 - 1. skin composing tissues: epidermis and dermis
 - 2. subcutaneous tissue
- Power transmittance into the skin was assessed using multilayer plane model:
 - 1. increases from 40% to 90% with increasing of frequencies from 10 GHz to 1 THz.
 - 2. no significant difference was observed at body parts.
- Temperature elevation at steady states (normal incidence):
 - 1. similar frequency dependence to power transmittance.
 - 2. a little difference is observed between forearm and other body parts, because of tissue thickness of subcutaneous tissue.
 - 3. below 0.25°C with exposure limit in general public up to 300 GHz, i.e., sufficiently small to cause thermal burn at skin (threshold of thermal burn is 9-10°C increase from skin temperature at normal ambient condition).

Thank you for the kind attention

This work was partly supported by the Ministry of Internal Affairs and Communications, Japan

12