Osulais studies of EMF exposure att the MMW

¿ Nunerical dosinetry and mathematical model to estimate cornea damage

M. Kojima ${ }^{1,2,3)}$, Y. Suzuki ${ }^{\text {4) }}$

1. Division of Vision Research for Environmental Health, Medical Research Institute, Kanazawa Medical University
2. Department of Ophthalmology, Kanazawa Medical University
3. Nursing School, Kanazawa Medical University
4. Department of Electrical Engineering and Computer Science, Tokyo Metropolitan University

pulpose

- To evaluatie power absorption and temperature elevation for ocular tissue (especially cornea) due to MMW exposure, numerical dosimetory and heat transport analysis were performed.
- In addition, to predict cornea epithelium damage, mathematical model based on CEM $43^{\circ} \mathrm{C}$ criteria was examined for $28,40,75$, and 95 GHz exposure, these include 5G frequency condition.

Heat transport mechanism for MMW exposure \checkmark The power absorption and
the temperature elevation
is highly localized within
several hundred $\mu \mathrm{m}$ depth
from the surface of the
cornea.

Eye models of rabbit and human

\checkmark These models are anatomically reviewed.
\checkmark Prepared 12.5, 25, and 50 $\mu \mathrm{m}$ mesh sizes .
\checkmark Consists of 7 tissues, cornea, aqueous humor, iris, lens, vitreous humor, sclera, and skin.

Simulation setup for EMF analysis

SAR distribution for each frequency $\begin{aligned} & \text { Power density }\end{aligned}$ $100 \mathrm{~mW} / \mathrm{cm}^{2}$

-SAR value becomes large according to the increase of frequency.

Comparison of penetration depth

Equatijons for heat transport simulation

-Non-compressive fluid
-Boussinesq approximation

- SMAC (Simplified marker and cell) method is used

Continuity equation

$$
\nabla \cdot \vec{V}=0
$$

Navier-storkes equation

$$
\frac{\partial \stackrel{\rightharpoonup}{V}}{\partial t}+(\vec{V} \cdot \nabla) \bar{V}=-\frac{1}{\rho} \nabla p+v \Delta \stackrel{\rightharpoonup}{V}+\bar{g}
$$

Biological heat transpot equation

```
Physical constantS
-density: }\rho[\textrm{kg}/\mp@subsup{\textrm{m}}{}{3}
-coefficient of kinematic viscosity: v
-specific heat : Cp [J/kg - K]
-heat conduction coefficient : K [W/m - K]
-metabolic heat : A
-Coefficient of blood flow : B [W/m3 - K]
-heat source : Q [W/m3]
•gravity :g [m/s2]
```

$$
\rho C_{p}\left(\frac{\partial T}{\partial t}+\underline{(\vec{V} \cdot \nabla) T)}=\nabla \cdot(K \nabla T)+A_{0}-B\left(T-T_{\text {blood }}\right)+Q\right.
$$

Calculation of pressulie

$$
Q=\rho S A R
$$

$$
\Delta p^{\prime}=\frac{\rho}{d t} \nabla \nabla \stackrel{\rightharpoonup}{V}^{*}
$$

Convective energy transport term

Variables
-velocity :V[m/s]
-temperature:T[$\left.{ }^{\circ} \mathrm{C}\right]$ -pressure:p[kg/m²]

Dependence of T and V on the frequency

 $200 \mathrm{~mW} / \mathrm{cm}^{2} 40 \mathrm{GHz}, 95 \mathrm{GHz}$Comparison of temperature distribution between rabbit and human 40GHz@200mW/cm²

Time: 360 (s)

Comparison of time course temperature elevation between rabbit and human(40GHz@200mW/cm²)

Human eye is superior in the heat transport ability, because of its deeper anterior chamber depth.

Quantifification of thermal dose

\square The method to determine the thermal dose has been proposed for cancer therapy from 1984. [1-3]

- This method is termed "thermal isoeffective dose"
- Recently this method is considered to apply to estimating threshold caused by thermal effect of MRI equipment.[4]
- The time-temperature data are converted to an equivalent number of minutes at $43^{\circ} \mathrm{C}$ temperature exposure
$-43^{\circ} \mathrm{C}$ is the near the break point for CHO and several other cell lines.
[1]Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10: 787-800.
[2]Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003; 19:267-294.
[3] Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, Dewhirst MW,
"Thresholds for thermal damage to normal tissues: an update", Int J Hyperthermia. 2011;27(4):320-43.
[4] van Rhoon GC1, Samaras T, Yarmolenko PS, Dewhirst MW, Neufeld E, Kuster N, "CEM43 ${ }^{\circ} \mathrm{C}$ thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?", Eur Radiol. 2013 Aug;23(8):2215-27

CEM $43^{\circ} \mathrm{C}$ criteria

\square Index of thermal isoeffective dose originally defined as follows.

$$
C E M 43^{\circ} C=t R^{(43-T)}
$$

- CEM $43^{\circ} \mathrm{C}$ cumulative number of equivalent minutes at $43^{\circ} \mathrm{C}$
- t: time interval (min)
- T: average temperature during time interval t .
- R: the number of minutes needed to compensate for a 1^{0} temperature change either above or below the breakpoint.
\square As for cornea, thermal exposure causes
$-21<\mathrm{CEM} 43^{\circ} \mathrm{C}<40 \mathrm{~min}$: Acute and minor damage
$-41<\mathrm{CEM} 43^{\circ} \mathrm{C}<22000$ min: Acute and significant damage
- 22000 < CEM43 ${ }^{\circ} \mathrm{C}$: Severe damage.

CEM $43^{\circ} \mathrm{C}$ distribution at 6 min ($75 \mathrm{GHz} 150 \mathrm{~mW} / \mathrm{cm}^{2}$)

-CEM $43^{\circ} \mathrm{C}$ distribution on the cornea surface. -Exposure condition is $75 \mathrm{GHz}, 150 \mathrm{~mW} / \mathrm{cm}^{2}$. -An example of 6 min exposure.

CEM $43^{\circ} \mathrm{C}$ is more than 21 minutes inside the circle

Prediction of PD threshold level for 6 min.

Freq. $[\mathrm{Hz}]$	PD threshold $\left[\mathrm{mW} / \mathrm{cm}^{2}\right]$
28	296
40	225
75	141
95	120

\checkmark Predicted PD threshold level based on CEM43 ${ }^{\circ} \mathrm{C}$ criteria agree with DD_{50} estimated by experiments.
\checkmark PD threshold level for 28 GHz exposure will be lager value than that for high frequency.

Summary

- Characteristics of temperature elevation disisilbution are dififerent between different firequency, and between rabbit and humen.
- Resulits of rabbit indicate higher temperature elevation than that of human.
\square Threshold level of power density become higher (relaxed) based on the CEM $43^{\circ} \mathrm{C}$ analysis, according to the decrease of frequency.

Thank you for your kind attention!

y_suzuki@tmu.ac.jp

The multi-physics simulation system for ocular
 The system is consists of 3 part: exposure to MMW

Reconsttuction of incident EMF

2D electromagnetic field due to lens antenna is measured \downarrow
Method: PWS ($\underline{\text { Plane }} \underline{\text { Wave }}$ Spectrum) method \downarrow
3D incident electromagnetic field is reconstructed

EMF analysis

Method :
3D scattered-field FDTD (Finite Difference Time Domain) method +rabbit eye model
\downarrow
induced electromagnetic field in the rabbit eye \rightarrow SAR

Heat Transport analysis

SAR ($\underline{\text { Specific }}$ Absorption Rate)

Heat Transportation $-\quad \begin{aligned} & \text { Heat Convection } \\ & \text { Heat Conduction }\end{aligned}$

Method : SMAC (Simplified marker and cell) method
Temperature and flow velocity + (pressure)

The reconstruction of 3D EMF (ElectroMagnetic Field)

-2D EMF was measured against the lens antenna for the reconstruction of the incident field. ${ }^{[4]}$

The experimental condition

Frequency	$75.4[\mathrm{GHz}]$
The mesh size	$1.0[\mathrm{~mm}]$
Measurement area (focus)	$3 \times 3\left[\mathrm{~cm}^{2}\right]$
Focus distance	$150[\mathrm{~mm}]$

EF measured at the focus ($x-y$ dimension)

-The waveguide is used for the measurement.

- The electric field (Ex and Ey distribution) was measured at the focal point with the lens antenna fixed by the $z<0$ side.

The Method of reconstruction of 3D electric field : PWS

-Measured 2D electric field is converted by Fourier transform under the assumption.
-The incident wave is plane wave to obtain the electric field in the wave number space.
-3D electric field is reconstructed by the inverse Fourier transform.
Fourier transform
$\tilde{E} x\left(k_{x}, k_{y}\right)=\iint E x(x, y, 0) e^{j\left(k_{x} x+k_{y} y\right)} d x d y$
$\tilde{E} y\left(k_{x}, k_{y}\right)=\iint E y(x, y, 0) e^{j\left(k_{x}+k_{y} y\right)} d x d y$
inverse Fourier transformation
$E x(x, y, z)=\frac{1}{(2 \pi)} \iint \tilde{E} x\left(k_{x}, k_{y}\right) e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)} d k_{x} d k_{y}$
$E y(x, y, z)=\frac{1}{(2 \pi)} \iint \tilde{E} y\left(k_{x}, k_{y}\right) e^{-j\left(k_{x}+k_{y} y+k_{0 z}\right)} d k_{x} d k_{y}$,
$E z(x, y, z)=\frac{1}{(2 \pi)} \iint\left\{\left(\hat{x}-\frac{k_{x}}{k_{0 z}}\right) \tilde{E}+\left(\hat{y}-\frac{k_{y}}{k_{z 0}}\right) \tilde{E} y\right\} e^{-j\left(k_{x} x+k_{y} y+k_{0 z} z\right)} d k_{x} d k_{,}$
However $k_{z 0}=\sqrt{k_{0}^{2}-k_{x}^{2}-k_{y}^{2}}$

Incident power density (x - y dimension) at the focus
-We can reconstruct realistic incident electric field.

- It is normalized by the maximum value of electric field.
-It is found that lens antenna generates highly localized electric field.

