EMF Energy Absorption
Mechanisms in the mmW Frequency Range

Andreas Christ
Background

• The compliance of wireless devices up to the 4th generation is tested against the basic restrictions by measuring SAR.

• The dielectric properties of the tissue simulants for the SAR measurements were determined by evaluating the plane-wave absorption in large numbers of head- and body-tissue combinations.

• For body tissue, constructive interference from the fat-muscle interface was observed that can lead to an increase of the psSAR of up to 3dB for far-field like exposure.

• For head tissue, no such effects could be identified.

• Compliance testing for mmWave frequencies no longer uses a dosimetric approach.

• The skin can no longer be regarded as bulk tissue for the characterization of the absorption of EM fields.
Objectives

• propose a stratified skin model for the analysis of EM energy absorption in the mmWave frequency range

• identify the skin layering structure that maximizes absorption

• quantify EM energy absorption and the induced temperature increase for plane-wave exposure

• characterize the near-field of a set of generic wireless devices with phased array antennas operating at 28GHz and 100GHz

• quantify the induced temperature increase based on the incident E-field and the real part of the power density averaged over surfaces of 1cm², 4cm² and 100cm²
Stratified Skin Model – Biophysical Properties

- Unperfused epidermis modeled as stratum corneum and viable epidermis
- Cole-Cole tissue properties:
 - Low water content for stratum corneum and hypodermis
 - High water content for viable epidermis, dermis and muscle
- Adiabatic thermal boundaries as conservative estimate of live conditions
Stratified Skin Model – Layer Thicknesses

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>thick SC</td>
<td>20 - 700µm</td>
</tr>
<tr>
<td>thin SC</td>
<td>10 - 20µm</td>
</tr>
<tr>
<td>viable epidermis</td>
<td>60 - 120µm</td>
</tr>
<tr>
<td>dermis</td>
<td>0.4 – 2.4 mm</td>
</tr>
<tr>
<td>hypodermis</td>
<td>1.1 – 5.6 mm or ∞</td>
</tr>
<tr>
<td>muscle</td>
<td>∞</td>
</tr>
</tbody>
</table>

- two body regions distinguished depending on stratum corneum thickness:
 - thick stratum corneum: fingers, palm, soles of the feet
 - thin stratum corneum: everywhere else on the body

- large variability for stratum corneum thickness of the hands depending on individual manual activities

- hypodermis or muscle as terminating layer
Power Transmission Coefficient

- Plane wave power transmission always > 45%, may exceed 90%
- Enhanced absorption due to constructive interference below 15GHz
- Enhanced absorption due to impedance matching above 15GHz
SC Thickness for Maximum Transmission

![Graph showing SC thickness for maximum transmission across different frequencies.](image-url)
Temperature Increase

- Temperature increase ΔT for adiabatic boundary conditions normalized to an incident power density of 10W/m^2

- ΔT in layered tissue up to 4 times higher than in homogeneous tissue due to increase in power transmission coefficient and reduced perfusion (epidermis, fat)
Generic Transmitters – 28GHz

- **F28b** – generic phone with 16 PIFA elements on the back of the ground plane operating at 28GHz
- **F28t** – generic phone with 16 PIFA elements on the bent top of the ground plane operating at 28GHz
- **N28** – generic phone with four folded feeding ports and 30 parasitically coupled notch antenna elements operating at 28GHz
Generic Transmitters – 100GHz

- **P100b** – generic phone with 16 patch antenna elements on the back of the ground plane operating at 100GHz

- **P100t** – generic phone with 16 patch antenna elements on the top of the bent top of the ground plane operating at 100GHz
Farfield Patterns of the Generic Transmitters

- **direct beam**: F28b, F28t, N28, F100b, F100t
- **deflected beam**: F28b, F28t, N28, F100b, F100t

Normalized far-field in dB:
-0, -5, -10, -15, -20
Positioning of the Generic Transmitters

- close distance: 1.7mm between ground and tissue corresponding to $\lambda/6$ at 28GHz (N28: 4.2mm distance because of case)
- far distance: increased by 8mm
Calculation of the Temperature Increase

- fields averaged over square surfaces of 1cm\(^2\), 4cm\(^2\) and 100cm\(^2\)
 - absolute value of the E-field vector
 - real part of the Poynting vector
 - normal component of the real part of the Poynting vector

- temperature increase simulated applying the antenna power required to reach an incident power density of 10W/m\(^2\)

- close and far distance, direct and deflected beam, homogeneous and layered (worst-case) skin, adiabatic boundary conditions
ΔT Averaged Over 1cm² – Homogeneous Skin

- similar ΔT for av. E-field and av. total Poynting vector
- generally higher ΔT for av. normal Poynting vector
- ΔT dependent on device and distance
ΔT Averaged Over 1cm^2 – Layered Skin

- ΔT generally higher by about a factor of 2
- Otherwise, similar characteristics as for homogeneous tissue
ΔT Averaged Over 4cm² – Homogeneous Skin

- ΔT generally higher than for an averaging surface of 1cm²
- reduced correlation between temperature increase and power density
- otherwise, similar characteristics as for homogeneous tissue
ΔT Averaged Over 20cm\(^2\) – Homogeneous Skin

- ΔT higher than for an averaging surface of 1cm\(^2\) and 4cm\(^2\)
- Significantly reduced correlation between temperature increase and power density
Correlation of ΔT and Power Density

- Standard deviation of ΔT with power density increases with size of averaging area indicating higher dependence of ΔT from device type.
- Improved correlation for normal av. Poynting vector in layered tissue for an averaging area of 1cm^2.
Summary and Conclusions

• Layered modeling of the skin yields an increase of the induced ΔT by up to a factor of 4 in comparison to homogeneous skin mainly in the palms and fingers. This can be attributed to impedance matching and reduced perfusion in the outer skin layers.

• Normalization of the temperature increase to the normal av. Poynting vector yields a higher temperature increase in comparison to the total av. Poynting vector, but shows a better correlation, i.e., larger independence of the incident field.

• The observed temperature increase remains under 1K if an averaging area of 1cm2 is used and the averaged power density does not exceed the exposure limit for the general public of 10W/m2.

• At distances $>\lambda/6$ (1.7mm at 28GHz), the impact of reactive fields is negligible. Further evaluations may be necessary for lower frequencies (10GHz).