Challenges in standardization related to EMF compliance above 6 GHz

BioEM 2018 pre conference workshop
June 24, 2018

Davide Colombi, Ericsson Research
Challenges in EMF compliance standardization for devices > 6 GHz
EMF compliance challenges for devices > 6 GHz

› Challenges related to the definition of the exposure metric

› Challenges related to the assessment of incident power density in close proximity of a device

› Challenges related to the efficiency of compliance assessment methods
Challenges related to the definition of the exposure metric

EMF exposure limits above 10 GHz (ICNIRP 1998) / 6 GHz (IEEE 2005) are defined in terms of incident power density

IEC TR 63170 - Spatial-average power density: energy per unit time and unit area crossing the surface of area A characterized by the normal unit vector \mathbf{n}

$$
\frac{1}{2A} \int_A \text{Re}(\mathbf{E} \times \mathbf{H}^*) \cdot \mathbf{n} da
$$

Ongoing discussion IEC/IEEE:
- Is this free-space quantity appropriate in the near-field considering the possible antenna coupling to the human tissue?
- Is the amplitude of the Poynting vector ($\mathbf{S} = \mathbf{E} \times \mathbf{H}^*$) rather than the energy flux more appropriate to define exposure limits (e.g. due to coupling conditions)?
Incident power density, insights

- At mmW frequencies, the contribution from the reactive near-field to the energy deposition in the tissue is small and so is the perturbation of the body on the antenna characteristics ([1]-[3])

- The correlation with temperature increase is the highest when exposure is evaluated based on the definition given by TR 63170 [4]

- Numerical and experimental data (e.g. [5]-[9]) show that incident power density can be used to limit tissue temperature elevation from near-field RF sources

At mmW frequencies, the averaged incident power density is an appropriate metric for compliance assessment

[7] Xu et al.,”RF Compliance Study of Temperature Elevation in Human Head Model Around 28 GHz for 5G User Equipment Application: Simulation
Challenges related to the assessment of incident power density in close proximity of a device (IEC TR 63170)

Measurements of both E-field and H-field on the evaluation surface

- E-field and H-field are measured with subsequent scans.
- If the field amplitude only is measured, the phase need to be reconstructed

Challenges: (1) Probes should be designed to avoid perturbation of the DUT (2) Manufacturing and calibration of H-field mmW probe is difficult

Measurements of the E-field amplitude on the evaluation surface (phase reconstruction)

- E-field amplitude scan(s)
- E-field phase retrieval
- H-field determination
- Power density evaluation

Challenges: (1) Probe should be designed to avoid perturbation of the DUT (2) Phase is not measured and need to be reconstructed (uncertainty factor need to be characterized)

Measurement of the E-field (amplitude and phase) at a larger distance from the evaluation surface (field back-propagation)

- E-field measurements (amplitude and phase)
- E-field back-propagation (inverse source, PWS, etc.) to the evaluation plane
- H-field determination
- Power density evaluation

Challenges: (1) Measuring phase is a difficult task (2) The uncertainty of back-propagation need to be characterized
IEC TR 63170 use case

SONY mockup, notch antenna array, 28 GHz

Measurement of the E-field (amplitude and phase) at a larger distance from the evaluation surface (waveguide probe)

Measurements of the E-field amplitude on the evaluation surface (phase reconstruction)

PD distribution, simulation

PD distribution, measurements
Challenges related with the efficiency of compliance assessment methods

› Field measurements are extremely time consuming (hour(s) x per configuration)

› Devices will be characterized by multiple transmitters above and below 6 GHz
 - Antenna arrays require field combining to determine exposure for the possible excitations
 - The total exposure ratio (TER) including contributions from above and below 6 GHz need to be assessed

\[
\text{TER} = \frac{\text{SAR}}{\text{SAR}_{\text{lim}}} + \frac{\text{Sinc}}{\text{Sinc}_{\text{lim}}}
\]

› Compliance tests for 5G devices might involve a large number of configurations

IEC/IEEE JWG11 and JWG12 are working to improve the efficiency of EMF compliance testing
- mixed approach (measurements and numerical assessments)
- improve system efficiency
Challenges in EMF compliance standardization for base stations >6 GHz
EMF compliance challenges for base stations > 6 GHz

› Beamforming and massive MIMO (mMIMO)
 - Energy is focused in directions where it is needed
 - Large variability of transmitted signals in time and space

Conventional base station: transmits a radio signal to a wide area regardless how many users are connected
mMIMO/beamforming: transmits a radio signal only to connected users

Realistic EMF compliance assessment models applicable for mMIMO are to be included in IEC 62669 [1][2]

Example – massive MIMO @ 28 GHz (Macro)

Perspective view

Exclusion Zone
General Public
Occupational

Array antenna with 8×8 elements

- $f = 28$ GHz
- 60° horizontal scan range
- 15° vertical scan range
- $EIRP_{\text{max}} = 72$ dBm

Without considering the effect of beamforming

All transmitted power assumed directed in the same beam for several minutes
Process repeated for all beams

Considering the effect of beamforming

Distribute the power per beam to obtain statically conservative compliance boundaries

See also BioEM 2018 poster PB 26
Conclusions

— 5G NR is an evolution of LTE and will make use of frequency bands above 6 GHz
 — lower frequencies will still provide the backbone for mobile communications

— The current technical challenges in EMF compliance assessments are due to:
 — A constantly increasing complexity in the wireless equipment
 — A change in the exposure metric > 6 GHz

— EMF compliance assessment standards are evolving to ensure the availability of harmonized procedures
 — For base station, the priority is to standardize methods for mMIMO products
 — For devices, efforts should be made in specifying methods, procedures and in identifying equipment which allow for an increased efficiency of EMF compliance testing