Review of studies of thermal response to skin above 6 GHz

Kenneth R. Foster

Department of Bioengineering

University of Pennsylvania

kfoster@seas.upenn.edu

Thermal Response of Human Skin to Microwave Energy: A Critical Review

Kenneth R. Foster*, Marvin Ziskin*, and Quirino Balzano**
Department of Bioengineering University of Pennsylvania

Address for correspondence:

*Department of Bioengineering
University of Pennsylvania
240 Skirkanich Hall
210 S. 33rd Street
Philadelphia PA 19104
kfoster@seas.upenn.edu

*Temple University Medical School 3420 N. Broad Street Philadelphia, PA ziskin@temple.edu

University of Maryland
College Park MD
qbfree01@aol.com

Available Studies

- Several studies acute exposures at high power densities, mostly 96 GHz (Brooks AFB group)
- Several studies at mm waves, mostly small area exposure from waveguide
- Miscellaneous other studies (mm wave exposure to eye, a few older studies at 10 GHz)
- Few if any studies involving large area heating, long times

Fig. 4. The mean increase in skin temperature (markers) vs. fitted functions (curves) for a range of power densities (eqn 3).

© 2000 Lippincott Williams & Wilkins, Inc.

Volume 78(3), March 2000, pp 259-267

HEATING AND PAIN SENSATION PRODUCED IN HUMAN SKIN BY MILLIMETER WAVES: COMPARISON TO A SIMPLE THERMAL MODEL

[Papers]

Walters, Thomas J.*; Blick, Dennis W.*; Johnson, Leland R.†; Adair, Eleanor R.†; Foster, Kenneth R.‡

Temperature measurements in the skin during mm-wave exposure with WG opening

Lower forearm

Frequency: 42.25 GHz Ziskin + Alekseev

Output power: 52 mW

Temperature rise kinetics measured at the skin surface during mm-wave exposure with YAV device (I_o =54.9 mW/cm²) or waveguide opening (I_o =208 mW/cm²) and fitting to model

(Ziskin + Alekseev)

Table 1 Summary of studies reporting temperature increases to skin from RF exposure

<u> </u>	1 Table 1. Summary of studies reporting temperature increases to skin from Re exposure						
	Study	Frequency,	Radius of heated	Exposure time t,	Measured skin	Max	Steady State
		power density	region, mm)	sec	temperature	temperature	Temperature
					increase, C	increase after	increase
						time t	(from shape
						(numerical	factor
						solution to	approximation,
						BHTE, using	Eq. 13b) using
						parameters	parameters
						given in Eq. 1)	below Eq. 1)
	Hendler et al.	10 GHz	(unspecified)	60	1	0.96	n/a
	(1963)	2500 W/m^2					
		(quoted as					
		power absorbed					
L		in skin)					
	Alekseev and	42.25 GHz,	forearm	600			
	Ziskin (2005)	human forearm	2.4 (2080 W/m ²)		4.5 (forearm)	4.9	4.9
		and finger, 2080	5.3 mm				
		or 549 W/m ²	(549 W/m^2)		3.0	2.45	2.85
			Finger	600	2.5	4.9	4.9
L			2.4 (2080 W/m ²)				
	Nelson et al.	94 GHz, 1750	5 mm	180	8.4	8.8	10.2
	(2002)	$ m W/m^2$					
ſ	<u>Hu</u> et al.	33.5 GHz, up to	3 mm	240	≈8	21	24
	(2011)	8530 W/m ² ,					
		mouse abdomen					

Gustrau and Bahr (2002)	77 GHz, 100 W/m² (human forearm)	Not stated	Not stated (tens of minutes?)	0.7	1.2	n/a
Sasaki et al. (2014	data at 40, 75 GHz, 2000 W/m² rabbit eye	6.5 mm (radius of comea)	180 sec	10.7 (40 GHz) (cornea) 13.2 (75 GHz) (cornea)	9.2 11.0 (calculations assume ma=0)	12.6 14.5
Walters et al. (2000)	94 GHz Back of 8 human subjects up to 18000 W/m ² 3 sec	2 cm	3 sec	Up to 14 C	Up to 14 C (good agreement with 1D conduction model for 3 sec exposures)	
Walters et al. (2004)	94 GHz, forearms of 6 human subjects "low power" 1750 W/m² (180 or 480 sec) "high power" 10 ⁴ W/m² (4 sec) or	1.65 cm	180 or 480 sec (low power) 4 sec (high power)	Low power: 9 C after 3 min (normal skin blood flow) 11 C after 5 min (blood flow from times 180-300 sec reduced to approximately baseline (pre- exposure) value	BHTE simulations: 12.2 (with mb given in Eq. 1 11.1 (2mb)	n/a
				High power: 8 C (small effect	10.2	

Goal: simple thermal model

- Need simple model (no anatomical details)
- Use fixed parameters
- Need to evaluate model using independent data

In simplified form, Pennes' bioheat equation (BHTE) can be written:

$$k\nabla^2 T - \rho^2 C_{mb}T + \rho SAR = \rho C \frac{dT}{dt}$$
 (1)

where

T is the temperature rise of the tissue (°C) above the baseline temperature (i.e. temperature above that previous to RF exposure)

k is the thermal conductivity of tissue (0.37 W/m °C)

SAR is the microwave power deposition rate (W/kg)

C is the heat capacity of the tissue (3390 W sec/kg°C)

 ρ is the tissue density (1109 kg/m³)

and m_b is the volumetric perfusion rate of blood (1.767 · 10⁻⁶ m³/(kg sec) or 106 ml/min/kg in the mixed units typically used in the physiology literature).

$$\tau_1 = 1 / m_b \rho \approx 500 \text{ sec}$$

 $\tau_2 = L^2 / \alpha$

Steady State Solution – 1D problem

$$T_{ss} = \frac{SAR_o}{C} \tau_{eff}$$
 (surface temperature, steady state)

where

$$\tau_{\mathit{eff}} = \frac{\tau_{\scriptscriptstyle 2} - \sqrt{\tau_{\scriptscriptstyle 1} \tau_{\scriptscriptstyle 2}}}{\tau_{\scriptscriptstyle 2} / \tau_{\scriptscriptstyle 1} - 1}$$

$$SAR_o = \frac{I_o T_{tr}}{\rho L}$$

Gaussian Beam Pattern

Solutions - 2D problem

- 1. Finite element solution
 - 1. Shape factor approximation

$$T_{ss} \approx \frac{\pi I_o T_{tr} R_o}{8k}$$
 (shape factor approximation for thin disk, uniformly heated)

$$\approx \frac{\pi I_o T_{tr} R_o}{5k}$$
 (shape factor approximation for thin disk, Gaussian heating)

Alekseev and Ziskin 2005

Table 1 Summary of studies reporting temperature increases to skin from RF exposure

<u> </u>	1 Table 1. Summary of studies reporting temperature increases to skin from Re exposure						
	Study	Frequency,	Radius of heated	Exposure time t,	Measured skin	Max	Steady State
		power density	region, mm)	sec	temperature	temperature	Temperature
					increase, C	increase after	increase
						time t	(from shape
						(numerical	factor
						solution to	approximation,
						BHTE, using	Eq. 13b) using
						parameters	parameters
						given in Eq. 1)	below Eq. 1)
	Hendler et al.	10 GHz	(unspecified)	60	1	0.96	n/a
	(1963)	2500 W/m^2					
		(quoted as					
		power absorbed					
L		in skin)					
	Alekseev and	42.25 GHz,	forearm	600			
	Ziskin (2005)	human forearm	2.4 (2080 W/m ²)		4.5 (forearm)	4.9	4.9
		and finger, 2080	5.3 mm				
		or 549 W/m ²	(549 W/m^2)		3.0	2.45	2.85
			Finger	600	2.5	4.9	4.9
L			2.4 (2080 W/m ²)				
	Nelson et al.	94 GHz, 1750	5 mm	180	8.4	8.8	10.2
	(2002)	$ m W/m^2$					
ſ	<u>Hu</u> et al.	33.5 GHz, up to	3 mm	240	≈8	21	24
	(2011)	8530 W/m ² ,					
		mouse abdomen					

Gustrau and Bahr (2002)	77 GHz, 100 W/m² (human forearm)	Not stated	Not stated (tens of minutes?)	0.7	1.2	n/a
Sasaki et al. (2014	data at 40, 75 GHz, 2000 W/m² rabbit eye	6.5 mm (radius of comea)	180 sec	10.7 (40 GHz) (cornea) 13.2 (75 GHz) (cornea)	9.2 11.0 (calculations assume ma=0)	12.6 14.5
Walters et al. (2000)	94 GHz Back of 8 human subjects up to 18000 W/m ² 3 sec	2 cm	3 sec	Up to 14 C	Up to 14 C (good agreement with 1D conduction model for 3 sec exposures)	
Walters et al. (2004)	94 GHz, forearms of 6 human subjects "low power" 1750 W/m² (180 or 480 sec) "high power" 10 ⁴ W/m² (4 sec) or	1.65 cm	180 or 480 sec (low power) 4 sec (high power)	Low power: 9 C after 3 min (normal skin blood flow) 11 C after 5 min (blood flow from times 180-300 sec reduced to approximately baseline (pre- exposure) value	BHTE simulations: 12.2 (with mb given in Eq. 1 11.1 (2mb)	n/a
				High power: 8 C (small effect	10.2	

Summary

- Simple model fits available data very well with no adjustable parameters
- But most data are for exposure situations where heat conduction dominates
 - Short times do not reach steady state
 - Small exposed areas
- To assess model need:
 - Extended exposures (minutes or more)
 - Larger exposed areas of skin

Biological Variability

- Variable skin blood flow
- Variable transfer of heat from skin to environment
- Microanatomy
- Intersubject variability

 Will be very difficult to base exposure limits on maximum temperature increase

[able 3, Heat flows across the skin. Data from Stolwijk and Hardy (1977), ILO (2012), Fiala et al (1999).				
√lechanism	Typical ranges of heat flow (W/m ²) in skin of			
	human			
Cooling of skin by evaporation of sweat	Varies with environmental conditions, from 75			
	(resting in thermoneutral environment) to > 350 (strenuous exercise)			
Convective cooling of skin	Depends on air flow, clothing. Approximately 2-4			
-	W/m ² per K (100-200 W/m ² for a 10 C difference			
	between between skin and environment) in still air,			
	to 10-15 W/m ² per K for forced convection with air			
	velocity 1 m/s.			
tadiative cooling/heating of skin	Depends on clothing and radiant temperature of			
	surroundings, approximately 5 W/m ² per K			
	(approximately 50 W/m ² for 10 C difference			
	between skin temperature and radiometric			
	temperature of surroundings.			
Conduction of heat from core into skin	20-100 W/m ² (depends on the thermoregulatory			
	status, level of activity, clothing)			

Implications of Work

- Thermal response is similar to that from purely surface heating.
- Don't need fine anatomical detail (heat conduction smoothes out effects of varying SAR)
- For small irradiated areas or short irradiation times, temperature increase can be reliably predicted (conduction dominates)
- Thermal model can be useful to develop temporal and spatial averaging
- Need to be used in connection with more detailed models - FDTD