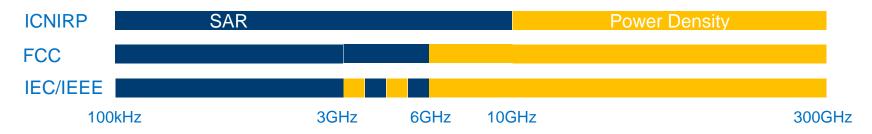


EMF compliance assessment based on a mixed approach of Measurements and numerical Simulations

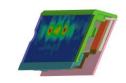
June 24th, 2018

Dr. Walid EL HAJJ


Table of Content

- Exposure to EMF Regulatory Compliance Limits
- Power Density Assessment procedure
- Evaluation Plane Definition –Examples
- Worst Case Phase Combination Assessment
- Phase Combination and Power Density Values
- Measurement Accuracy & Uncertainty (WiGig @60GHz)
- RF exposure Challenges at mm-Waves

Exposure to EMF – Regulatory Compliance Limits


- ✓ Human Body > 20cm to any radiator: MPE (Max Permissible Exposure) calculation
- ✓ Human Body < 20cm to radiator up to 6GHz : SAR (Specific Absorption rate) $SAR = \frac{\sigma |E|^2}{2\rho}$
- ✓ Human Body to radiator > 6GHz : PD (Power Density) $S_{av} = \frac{1}{AT} \iint (\mathcal{E} \times \mathcal{H}) \cdot \hat{\mathbf{n}} dA dT$

Regulatory Body	Power Density Limit	Averaging Area
FCC	1 m///am2	1 cm ²
ETSI	1 mW/cm ²	20 cm ²

Power Density Assesment Procedure

- 1 Near-field simulation of the industrial design
 - Numerical Model Definition: CAD File, simulation Domain
 - Definition of:
 - Evaluation planes
 - Dielectric coefficients of materials
- 2 Post-Processing : Calculation of phase combinations leading to the highest exposure
- 3 Validation of simulated PD @ worst exposure plane
 - E-field measurement using near-field probe, H-field reconstruction and power density calculation
 - Correlation between near-field measurement and simulation at exposure plane

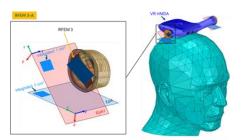
Evaluation Plane Definition - Examples

1 – Form Factors

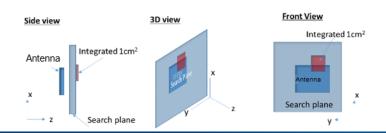
Tablets

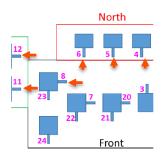
Convertibles

Clam Shell



Mobile


Other



Worst Case Phase Combination Assessment

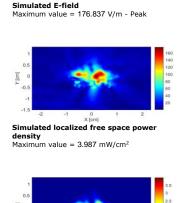
- Find the location of maximum power density on the evaluation surface in each evaluation configuration using an upper bound method.
- 2. The antenna phases are then adjusted to maximize the power density across the spatial averaging area that was found using the upper-bound method.
- Calculate the power density with the antenna phases.
 Repeat the steps for all needed configurations (Channels, sub-arrays...)
- 4. Validate the simulation by measurement at distances supported by the measurement method.

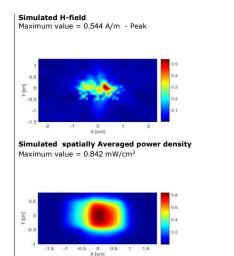
$$\overline{E_{\text{UB,g}}} = \vec{x} \sum_{k=1}^{N} \sqrt{\text{Re}[E_{kx,g}]^{2} + \text{Im}[E_{kx,g}]^{2}} + \vec{y} \sum_{k=1}^{N} \sqrt{\text{Re}[E_{ky,g}]^{2} + \text{Im}[E_{ky,g}]^{2}}$$

$$+ \vec{z} \sum_{k=1}^{N} \sqrt{\text{Re}[E_{kx,g}]^{2} + \text{Im}[E_{kx,g}]^{2}} = \vec{x} \sum_{k=1}^{N} |E_{kx}| + \vec{y} \sum_{k=1}^{N} |E_{ky,g}| + \vec{z} \sum_{k=1}^{N} |E_{kx,g}|$$

$$\overline{H_{\text{UB,g}}} = \vec{x} \sum_{k=1}^{N} \sqrt{\text{Re}[H_{kx,g}]^{2} + \text{Im}[H_{kx,g}]^{2}} + \vec{y} \sum_{k=1}^{N} \sqrt{\text{Re}[H_{ky,g}]^{2} + \text{Im}[H_{ky,g}]^{2}}$$

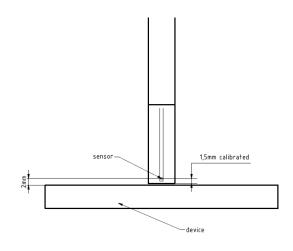
$$+ \vec{z} \sum_{k=1}^{N} \sqrt{\text{Re}[H_{kx,g}]^{2} + \text{Im}[H_{kx,g}]^{2}} = \vec{x} \sum_{k=1}^{N} |H_{kx,g}| + \vec{y} \sum_{k=1}^{N} |H_{ky,g}| + \vec{z} \sum_{k=1}^{N} |H_{kx,g}|$$


$$P_{g} = \frac{1}{2} Re\{(\vec{E} \times \vec{H}^{*})\} :$$

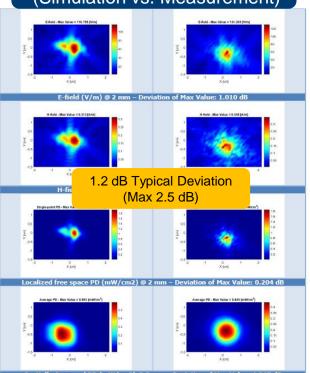

Phase Combination and Power Density Values

General example- WiGig 60 GHz- 3 Subsets – 3 Channels

Antenna	Subset 1 – Back plane Phases [Degrees]			Subset 2 – Edge plane Phases [Degrees]			Subset 3 – Back plane Phases [Degrees]		
index	CH1	CH2	СНЗ	CH1	CH2	СНЗ	CH1	CH2	СНЗ
	Ph #10	Ph #11	Ph #12	Ph #13	Ph #14	Ph #15	Ph #16	Ph #17	Ph #18
	-	-	-	-	-	-	180	0	270
	-	-	-	-	-	-	0	180	90
	-	-	-	-	-	-	0	0	0
	-	-	-	270	270	270	-	-	-
	-	-	-	0	0	0	-	-	-
	-	-	-	180	270	0	-	-	-
	0	90	90	-	-	-	-	-	-
8	270	270	90	-	-	-	-	-	-
9	-	-	-	180	0	180	-	-	-
	-	-	-	90	180	270	-	-	-
	-	-	-	180	270	180	-	-	-
12	-	-	-	0	270	0	-	-	-
13	-	-	-	180	180	0	270	90	0
	-	-	-	0	180	0	90	0	0
	-	-	-	270	90	270	90	0	0
	-	-	-	90	180	270	0	270	270
	270	180	270		-	-	-	-	-
	270	180	180		-	-	-	-	-
	0	180	180	-	-	-	-	-	-
	270	0	0	-	-	-	-	-	-
	270	0	0	-	-	-	270	90	0
	0	90	90	-	-	-	0	180	90
	270	180	90	-	-	-	0	270	180
24	90	180	270	-	-	-	180	90	0


	Fi	rst worst ca	se	Second worst case			
	Channel 1	Channel 2	Channel 3	Channel 1	Channel 2	Channel 3	
Subset 1	0.842	0.744	0.630	0.840	0.739	0.628	
Subset 2	0.427	0.385	0.340	0.305	0.355	0.300	
Subset 3	0.612	0.534	0.450	0.592	0.486	0.419	

Near field Measurement



- The probe consist of two dipoles optimally arranged with different angles (γ1 and γ2) to obtain pseudo-vector information, printed on glass substrate protected by high density foam that allows low perturbation of the measured field.
- Near-field probe measuring at 2 mm minimum distance to the device
- H-field reconstruction and power density calculation

Measurement Accuracy & Uncertainty (WiGig @60GHz)

PD @2mm Distance (Simulation vs. Measurement)

Uncertainty Budget								
Error Description	Uncertainty Value (±dB)	Probability Distribution	Div.	(CI)	Std. Unc. (±dB)	(Vi) Veff		
Measurement System								
Probe Calibration	0.43	N	1	1	0.43	00		
Hemispherical Isotropy	0.60	R	√3	1	0.35	00		
Linearity	0.20	R	√3	1	0.12	00		
System Detection Limits	0.04	R	√3	1	0.02	00		
Modulation Response*	0.17	R	√3	1	0.10	00		
Readout Electronics	0.01	N	1	1	0.01	00		
Response Time	0.03	R	√3	1	0.02	00		
Integration Time	0.11	R	√3	1	0.06	00		
RF Ambient Noise	0.04	R	√3	1	0.02	00		
RF Ambient Reflections	0.21	R	√3	1	0.12	00		
Probe Positioner	0.04	R	√3	1	0.02	00		
Probe Positioning	0.11	R	√3	1	0.06	00		
Savq Reconstruction	0.61	R	√3	1	0.35	00		
Test Sample Related								
Power Drift	0.57	R	√3	1	0.33	00		
Power Scaling	0.00	R	√3	1	0.00	00		
	0.77	00						
Expanded Std. Uncertainty								

RF exposure Considerations at mm-Waves:

- Metrics : Averaging Area / Averaging Time
- Evaluation plane Definition
- Material Characteristics
- Antenna Array Phase combinations
- Fields Post-processing
- Measurement Distance

